Third-order affine-invariant (systems of) PDEs in two independent variables as vanishing of the Fubini-Pick invariant (2202.09894v4)
Abstract: In this paper we study $3{\mathrm{rd}}$ order (system of) PDEs in two independent variables $x,y$ and one unknown function $u$ that are invariant with respect to the group of affine transformation $\mathrm{Aff}(3)$ of $\mathbb{R}3={(x,y,u)}$. After proving their relationship with the Fubini-Pick invariant, we derive the aforementioned PDEs by using a general method introduced in [D.V. Alekseevsky, J. Gutt, G. Manno, and G. Moreno: A general method to construct invariant {PDEs} on homogeneous manifolds. Communications in Contemporary Mathematics (2021)], which sheds light on some of their geometrical properties.
- Projectively and affinely invariant pdes on hypersurfaces. Proceedings of the Edinburg Mathematical Society, (to appear).
- Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions. Ann. Inst. Fourier (Grenoble), 62(2):497–524, 2012. ISSN 0373-0956. doi: 10.5802/aif.2686. URL http://dx.doi.org/10.5802/aif.2686.
- A general method to construct invariant PDEs on homogeneous manifolds. Communications in Contemporary Mathematics, page 2050089, Jan. 2021. doi: 10.1142/s0219199720500893. URL https://doi.org/10.1142/s0219199720500893.
- Contact relative differential invariants for non generic parabolic Monge-Ampère equations. Acta Appl. Math., 101(1-3):5–19, 2008. ISSN 0167-8019. doi: 10.1007/s10440-008-9204-8. URL http://dx.doi.org/10.1007/s10440-008-9204-8.
- Normal forms for Lagrangian distributions on 5-dimensional contact manifolds. Differential Geom. Appl., 27(2):212–229, 2009. ISSN 0926-2245. doi: 10.1016/j.difgeo.2008.06.019. URL https://doi.org/10.1016/j.difgeo.2008.06.019.
- Global Affine Differential Geometry of Hypersurfaces. De Gruyter, 2019-07-14T21:27:59.826+02:00 2015. ISBN 978-3-11-039090-2. doi: 10.1515/9783110268898. URL https://www.degruyter.com/view/product/179593.
- O. Arnaldsson and F. Valiquette. Invariants of surfaces in three-dimensional affine geometry. Symmetry, Integrability and Geometry: Methods and Applications, Mar 2021. ISSN 1815-0659. doi: 10.3842/sigma.2021.033. URL http://dx.doi.org/10.3842/SIGMA.2021.033.
- G. Boillat. Sur l’équation générale de Monge-Ampère d’ordre supérieur. C. R. Acad. Sci. Paris Sér. I Math., 315(11):1211–1214, 1992. ISSN 0764-4442.
- E. Goursat. Sur les équations du second ordre à n𝑛nitalic_n variables analogues à l’équation de Monge-Ampère. Bull. Soc. Math. France, 27:1–34, 1899. ISSN 0037-9484. URL http://www.numdam.org/item?id=BSMF_1899__27__1_0.
- F. John. Partial Differential Equations. Applied Mathematical Sciences (Book 1). Springer, 1991.
- Geometry of jet spaces and nonlinear partial differential equations, volume 1 of Advanced Studies in Contemporary Mathematics. Gordon and Breach Science Publishers, New York, 1986a. ISBN 2-88124-051-8.
- Geometry of jet spaces and nonlinear partial differential equations, volume 1 of Advanced Studies in Contemporary Mathematics. Gordon and Breach Science Publishers, New York, 1986b. ISBN 2-88124-051-8.
- T. Kurose. On the divergences of 1-conformally flat statistical manifolds. Tohoku Mathematical Journal, 46:427–433, 1994. URL https://api.semanticscholar.org/CorpusID:122399115.
- Contact geometry and non-linear differential equations, volume 101 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. ISBN 978-0-521-82476-7; 0-521-82476-1.
- Differential equations uniquely determined by algebras of point symmetries. Teoret. Mat. Fiz., 151(3):486–494, 2007a. ISSN 0564-6162. doi: 10.1007/s11232-007-0069-1. URL http://dx.doi.org/10.1007/s11232-007-0069-1.
- G. Manno and G. Moreno. Meta-symplectic geometry of 3rdsuperscript3rd3^{\rm rd}3 start_POSTSUPERSCRIPT roman_rd end_POSTSUPERSCRIPT order Monge-Ampère equations and their characteristics. SIGMA Symmetry Integrability Geom. Methods Appl., 12:032, 35 pages, 2016. ISSN 1815-0659. doi: 10.3842/SIGMA.2016.032. URL http://dx.doi.org/10.3842/SIGMA.2016.032.
- On differential equations characterized by their Lie point symmetries. J. Math. Anal. Appl., 332(2):767–786, 2007b. ISSN 0022-247X.
- Ordinary differential equations described by their Lie symmetry algebra. J. Geom. Phys., 85:2–15, 2014. ISSN 0393-0440. doi: 10.1016/j.geomphys.2014.05.028. URL http://dx.doi.org/10.1016/j.geomphys.2014.05.028.
- K. Nomizu and T. Sasaki. Affine Differential Geometry: Geometry of Affine Immersions. Cambridge Tracts in Mathematics. Cambridge University Press, 1994. ISBN 9780521441773. URL https://books.google.it/books?id=lEUVHyjQANcC.
- P. J. Olver. Applications of Lie groups to differential equations, volume 107 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993. ISBN 0-387-94007-3; 0-387-95000-1. doi: 10.1007/978-1-4612-4350-2. URL http://dx.doi.org/10.1007/978-1-4612-4350-2.
- I. G. Petrovsky. Lectures on Partial Differential Equations. Dover Books on Mathematics. Dover Publications, 1992. ISBN 978-0486669021.
- D. J. Saunders. The geometry of jet bundles, volume 142 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1989. ISBN 0-521-36948-7. doi: 10.1017/CBO9780511526411. URL http://dx.doi.org/10.1017/CBO9780511526411.
- V. Ushakov. The explicit general solution of trivial monge-ampère equation. Commentarii Mathematici Helvetici, 75:125–133, 2000. URL https://api.semanticscholar.org/CorpusID:121472372.
- A. M. Vinogradov. An informal introduction to the geometry of jet spaces. Rend. Sem. Fac. Sci. Univ. Cagliari, 58:Suppl.:301–333, 1988.
- K. Yamaguchi. Contact geometry of higher order. Japan. J. Math. (N.S.), 8(1):109–176, 1982. ISSN 0289-2316.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.