Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Third-order affine-invariant (systems of) PDEs in two independent variables as vanishing of the Fubini-Pick invariant (2202.09894v4)

Published 20 Feb 2022 in math.DG

Abstract: In this paper we study $3{\mathrm{rd}}$ order (system of) PDEs in two independent variables $x,y$ and one unknown function $u$ that are invariant with respect to the group of affine transformation $\mathrm{Aff}(3)$ of $\mathbb{R}3={(x,y,u)}$. After proving their relationship with the Fubini-Pick invariant, we derive the aforementioned PDEs by using a general method introduced in [D.V. Alekseevsky, J. Gutt, G. Manno, and G. Moreno: A general method to construct invariant {PDEs} on homogeneous manifolds. Communications in Contemporary Mathematics (2021)], which sheds light on some of their geometrical properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Projectively and affinely invariant pdes on hypersurfaces. Proceedings of the Edinburg Mathematical Society, (to appear).
  2. Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions. Ann. Inst. Fourier (Grenoble), 62(2):497–524, 2012. ISSN 0373-0956. doi: 10.5802/aif.2686. URL http://dx.doi.org/10.5802/aif.2686.
  3. A general method to construct invariant PDEs on homogeneous manifolds. Communications in Contemporary Mathematics, page 2050089, Jan. 2021. doi: 10.1142/s0219199720500893. URL https://doi.org/10.1142/s0219199720500893.
  4. Contact relative differential invariants for non generic parabolic Monge-Ampère equations. Acta Appl. Math., 101(1-3):5–19, 2008. ISSN 0167-8019. doi: 10.1007/s10440-008-9204-8. URL http://dx.doi.org/10.1007/s10440-008-9204-8.
  5. Normal forms for Lagrangian distributions on 5-dimensional contact manifolds. Differential Geom. Appl., 27(2):212–229, 2009. ISSN 0926-2245. doi: 10.1016/j.difgeo.2008.06.019. URL https://doi.org/10.1016/j.difgeo.2008.06.019.
  6. Global Affine Differential Geometry of Hypersurfaces. De Gruyter, 2019-07-14T21:27:59.826+02:00 2015. ISBN 978-3-11-039090-2. doi: 10.1515/9783110268898. URL https://www.degruyter.com/view/product/179593.
  7. O. Arnaldsson and F. Valiquette. Invariants of surfaces in three-dimensional affine geometry. Symmetry, Integrability and Geometry: Methods and Applications, Mar 2021. ISSN 1815-0659. doi: 10.3842/sigma.2021.033. URL http://dx.doi.org/10.3842/SIGMA.2021.033.
  8. G. Boillat. Sur l’équation générale de Monge-Ampère d’ordre supérieur. C. R. Acad. Sci. Paris Sér. I Math., 315(11):1211–1214, 1992. ISSN 0764-4442.
  9. E. Goursat. Sur les équations du second ordre à n𝑛nitalic_n variables analogues à l’équation de Monge-Ampère. Bull. Soc. Math. France, 27:1–34, 1899. ISSN 0037-9484. URL http://www.numdam.org/item?id=BSMF_1899__27__1_0.
  10. F. John. Partial Differential Equations. Applied Mathematical Sciences (Book 1). Springer, 1991.
  11. Geometry of jet spaces and nonlinear partial differential equations, volume 1 of Advanced Studies in Contemporary Mathematics. Gordon and Breach Science Publishers, New York, 1986a. ISBN 2-88124-051-8.
  12. Geometry of jet spaces and nonlinear partial differential equations, volume 1 of Advanced Studies in Contemporary Mathematics. Gordon and Breach Science Publishers, New York, 1986b. ISBN 2-88124-051-8.
  13. T. Kurose. On the divergences of 1-conformally flat statistical manifolds. Tohoku Mathematical Journal, 46:427–433, 1994. URL https://api.semanticscholar.org/CorpusID:122399115.
  14. Contact geometry and non-linear differential equations, volume 101 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. ISBN 978-0-521-82476-7; 0-521-82476-1.
  15. Differential equations uniquely determined by algebras of point symmetries. Teoret. Mat. Fiz., 151(3):486–494, 2007a. ISSN 0564-6162. doi: 10.1007/s11232-007-0069-1. URL http://dx.doi.org/10.1007/s11232-007-0069-1.
  16. G. Manno and G. Moreno. Meta-symplectic geometry of 3rdsuperscript3rd3^{\rm rd}3 start_POSTSUPERSCRIPT roman_rd end_POSTSUPERSCRIPT order Monge-Ampère equations and their characteristics. SIGMA Symmetry Integrability Geom. Methods Appl., 12:032, 35 pages, 2016. ISSN 1815-0659. doi: 10.3842/SIGMA.2016.032. URL http://dx.doi.org/10.3842/SIGMA.2016.032.
  17. On differential equations characterized by their Lie point symmetries. J. Math. Anal. Appl., 332(2):767–786, 2007b. ISSN 0022-247X.
  18. Ordinary differential equations described by their Lie symmetry algebra. J. Geom. Phys., 85:2–15, 2014. ISSN 0393-0440. doi: 10.1016/j.geomphys.2014.05.028. URL http://dx.doi.org/10.1016/j.geomphys.2014.05.028.
  19. K. Nomizu and T. Sasaki. Affine Differential Geometry: Geometry of Affine Immersions. Cambridge Tracts in Mathematics. Cambridge University Press, 1994. ISBN 9780521441773. URL https://books.google.it/books?id=lEUVHyjQANcC.
  20. P. J. Olver. Applications of Lie groups to differential equations, volume 107 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993. ISBN 0-387-94007-3; 0-387-95000-1. doi: 10.1007/978-1-4612-4350-2. URL http://dx.doi.org/10.1007/978-1-4612-4350-2.
  21. I. G. Petrovsky. Lectures on Partial Differential Equations. Dover Books on Mathematics. Dover Publications, 1992. ISBN 978-0486669021.
  22. D. J. Saunders. The geometry of jet bundles, volume 142 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1989. ISBN 0-521-36948-7. doi: 10.1017/CBO9780511526411. URL http://dx.doi.org/10.1017/CBO9780511526411.
  23. V. Ushakov. The explicit general solution of trivial monge-ampère equation. Commentarii Mathematici Helvetici, 75:125–133, 2000. URL https://api.semanticscholar.org/CorpusID:121472372.
  24. A. M. Vinogradov. An informal introduction to the geometry of jet spaces. Rend. Sem. Fac. Sci. Univ. Cagliari, 58:Suppl.:301–333, 1988.
  25. K. Yamaguchi. Contact geometry of higher order. Japan. J. Math. (N.S.), 8(1):109–176, 1982. ISSN 0289-2316.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube