Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Additive rule of real and reciprocal space topologies at disclinations (2202.09560v1)

Published 19 Feb 2022 in cond-mat.supr-con and cond-mat.other

Abstract: Topological materials are renowned for their ability to harbor states localized at their peripheries, such as surfaces, edges, and corners. Accompanying these states, fractional charges appear on peripheral unit cells. Recently, topologically bound states and fractional charges at disclinations of crystalline defects have been theoretically predicted. This so-called bulk-disclination correspondence has been experimentally confirmed in artificial crystalline structures, such as microwave-circuit arrays and photonic crystals. Here, we demonstrate an additive rule between the real-space topological invariant $\mathbf{s}$ (related to the Burgers vector $\mathbf{B}$) and the reciprocal-space topological invariant $\mathbf{p}$ (vectored Zak's phase of bulk wave functions). The bound states and fractional charges concur at a disclination center only if $\mathbf{s}+\mathbf{p}/2\pi$ is topologically nontrivial; otherwise, no bound state forms even if fractional charges are trapped. Besides the dissociation of fractional charges from bound states, the additive rule also dictates the existence of half-bound states extending over only half of a sample and ultra-stable bound states protected by both real-space and reciprocal-space topologies. Our results add another dimension to the ongoing study of topological matter and may germinate interesting applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.