Papers
Topics
Authors
Recent
Search
2000 character limit reached

DRL-based Joint Beamforming and BS-RIS-UE Association Design for RIS-Assisted mmWave Networks

Published 19 Feb 2022 in cs.IT, eess.SP, and math.IT | (2202.09524v1)

Abstract: Reconfigurable intelligent surface (RIS) is considered as an extraordinarily promising technology to solve the blockage problem of millimeter wave (mmWave) communications owing to its capable of establishing a reconfigurable wireless propagation. In this paper, we focus on a RIS-assisted mmWave communication network consisting of multiple base stations (BSs) serving a set of user equipments (UEs). Considering the BS-RIS-UE association problem which determines that the RIS should assist which BS and UEs, we joint optimize BS-RIS-UE association and passive beamforming at RIS to maximize the sum-rate of the system. To solve this intractable non-convex problem, we propose a soft actor-critic (SAC) deep reinforcement learning (DRL)-based joint beamforming and BS-RIS-UE association design algorithm, which can learn the best policy by interacting with the environment using less prior information and avoid falling into the local optimal solution by incorporating with the maximization of policy information entropy. The simulation results demonstrate that the proposed SAC-DRL algorithm can achieve significant performance gains compared with benchmark schemes.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.