Papers
Topics
Authors
Recent
2000 character limit reached

FinNet: Solving Time-Independent Differential Equations with Finite Difference Neural Network

Published 18 Feb 2022 in cs.LG | (2202.09282v2)

Abstract: Deep learning approaches for partial differential equations (PDEs) have received much attention in recent years due to their mesh-freeness and computational efficiency. However, most of the works so far have concentrated on time-dependent nonlinear differential equations. In this work, we analyze potential issues with the well-known Physic Informed Neural Network for differential equations with little constraints on the boundary (i.e., the constraints are only on a few points). This analysis motivates us to introduce a novel technique called FinNet, for solving differential equations by incorporating finite difference into deep learning. Even though we use a mesh during training, the prediction phase is mesh-free. We illustrate the effectiveness of our method through experiments on solving various equations, which shows that FinNet can solve PDEs with low error rates and may work even when PINNs cannot.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.