A class of twisted generalized Reed-Solomon codes (2202.09011v2)
Abstract: Let $\mathbb{F}q$ be a finite field of size $q$ and $\mathbb{F}_q*$ the set of non-zero elements of $\mathbb{F}_q$. In this paper, we study a class of twisted generalized Reed-Solomon code $C\ell(D, k, \eta, \vec{v})\subset \mathbb{F}qn$ generated by the following matrix [ \left(\begin{array}{cccc} v{1} & v_{2} & \cdots & v_{n} \ v_{1} \alpha_{1} & v_{2} \alpha_{2} & \cdots & v_{n} \alpha_{n} \ \vdots & \vdots & \ddots & \vdots \ v_{1} \alpha_{1}{\ell-1} & v_{2} \alpha_{2}{\ell-1} & \cdots & v_{n} \alpha_{n}{\ell-1} \ v_{1} \alpha_{1}{\ell+1} & v_{2} \alpha_{2}{\ell+1} & \cdots & v_{n} \alpha_{n}{\ell+1} \ \vdots & \vdots & \ddots & \vdots \ v_{1} \alpha_{1}{k-1} & v_{2} \alpha_{2}{k-1} & \cdots & v_{n} \alpha_{n}{k-1} \ v_{1}\left(\alpha_{1}{\ell}+\eta\alpha_{1}{q-{2}}\right) & v_{2}\left(\alpha_{2}{\ell}+ \eta \alpha_{2}{q-2}\right) &\cdots & v_{n}\left(\alpha_{n}{\ell}+\eta\alpha_{n}{q-2}\right) \end{array}\right) ] where $0\leq \ell\leq k-1,$ the evaluation set $D={\alpha_{1},\alpha_{2},\cdots, \alpha_{n}}\subseteq \mathbb{F}q*$, scaling vector $\vec{v}=(v_1,v_2,\cdots,v_n)\in (\mathbb{F}_q*)n$ and $\eta\in\mathbb{F}_q*$. The minimum distance and dual code of $C\ell(D, k, \eta, \vec{v})$ will be determined. For the special case $\ell=k-1,$ a sufficient and necessary condition for $C_{k-1}(D, k, \eta, \vec{v})$ to be self-dual will be given. We will also show that the code is MDS or near-MDS. Moreover, a complete classification when the code is near-MDS or MDS will be presented.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.