Papers
Topics
Authors
Recent
Search
2000 character limit reached

Worst-Case to Average-Case Reductions via Additive Combinatorics

Published 18 Feb 2022 in cs.DS and cs.CC | (2202.08996v1)

Abstract: We present a new framework for designing worst-case to average-case reductions. For a large class of problems, it provides an explicit transformation of algorithms running in time $T$ that are only correct on a small (subconstant) fraction of their inputs into algorithms running in time $\widetilde{O}(T)$ that are correct on all inputs. Using our framework, we obtain such efficient worst-case to average-case reductions for fundamental problems in a variety of computational models; namely, algorithms for matrix multiplication, streaming algorithms for the online matrix-vector multiplication problem, and static data structures for all linear problems as well as for the multivariate polynomial evaluation problem. Our techniques crucially rely on additive combinatorics. In particular, we show a local correction lemma that relies on a new probabilistic version of the quasi-polynomial Bogolyubov-Ruzsa lemma.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.