Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Enhanced DeepONet for Modeling Partial Differential Operators Considering Multiple Input Functions (2202.08942v2)

Published 17 Feb 2022 in cs.LG, cs.NA, and math.NA

Abstract: Machine learning, especially deep learning is gaining much attention due to the breakthrough performance in various cognitive applications. Recently, neural networks (NN) have been intensively explored to model partial differential equations as NN can be viewed as universal approximators for nonlinear functions. A deep network operator (DeepONet) architecture was proposed to model the general non-linear continuous operators for partial differential equations (PDE) due to its better generalization capabilities than existing mainstream deep neural network architectures. However, existing DeepONet can only accept one input function, which limits its application. In this work, we explore the DeepONet architecture to extend it to accept two or more input functions. We propose new Enhanced DeepONet or EDeepONet high-level neural network structure, in which two input functions are represented by two branch DNN sub-networks, which are then connected with output truck network via inner product to generate the output of the whole neural network. The proposed EDeepONet structure can be easily extended to deal with multiple input functions. Our numerical results on modeling two partial differential equation examples shows that the proposed enhanced DeepONet is about 7X-17X or about one order of magnitude more accurate than the fully connected neural network and is about 2X-3X more accurate than a simple extended DeepONet for both training and test.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.