Papers
Topics
Authors
Recent
Search
2000 character limit reached

Two-stage architectural fine-tuning with neural architecture search using early-stopping in image classification

Published 17 Feb 2022 in cs.CV and cs.AI | (2202.08604v3)

Abstract: In many deep neural network (DNN) applications, the difficulty of gathering high-quality data in the industry field hinders the practical use of DNN. Thus, the concept of transfer learning has emerged, which leverages the pretrained knowledge of DNNs trained on large-scale datasets. Therefore, this paper suggests two-stage architectural fine-tuning, inspired by neural architecture search (NAS). One of main ideas is mutation, which reduces the search cost using given architectural information. Moreover, early-stopping is considered which cuts NAS costs by terminating the search process in advance. Experimental results verify our proposed method reduces 32.4% computational and 22.3% searching costs.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.