2000 character limit reached
The Distribution of the Number of Isolated Nodes in the 1-Dimensional Soft Random Geometric Graph (2202.08044v1)
Published 16 Feb 2022 in math.PR
Abstract: We study the number of isolated nodes in a soft random geometric graph whose vertices constitute a Poisson process on the torus of length L (the line segment [0,L] with periodic boundary conditions), and where an edge is present between two nodes with a probability which depends on the distance between them. Edges between distinct pairs of nodes are mutually independent. In a suitable scaling regime, we show that the number of isolated nodes converges in total variation to a Poisson random variable. The result implies an upper bound on the probability that the random graph is connected.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.