Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probabilistic Embeddings Revisited (2202.06768v2)

Published 14 Feb 2022 in cs.CV

Abstract: In recent years, deep metric learning and its probabilistic extensions claimed state-of-the-art results in the face verification task. Despite improvements in face verification, probabilistic methods received little attention in the research community and practical applications. In this paper, we, for the first time, perform an in-depth analysis of known probabilistic methods in verification and retrieval tasks. We study different design choices and propose a simple extension, achieving new state-of-the-art results among probabilistic methods. Finally, we study confidence prediction and show that it correlates with data quality, but contains little information about prediction error probability. We thus provide a new confidence evaluation benchmark and establish a baseline for future confidence prediction research. PyTorch implementation is publicly released.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.