Existence of Large-Data Global Weak Solutions to Kinetic Models of Nonhomogeneous Dilute Polymeric Fluids (2202.06445v1)
Abstract: We prove the existence of large-data global-in-time weak solutions to a general class of coupled bead-spring chain models with finitely extensible nonlinear elastic (FENE) type spring potentials for nonhomogeneous incompressible dilute polymeric fluids in a bounded domain in $\mathbb{R}d$, $d=2$ or $3$. The class of models under consideration involves the Navier--Stokes system with variable density, where the viscosity coefficient depends on both the density and the polymer number density, coupled to a Fokker--Planck equation with a density-dependent drag coefficient. The proof is based on combining a truncation of the probability density function with a two-stage Galerkin approximation and weak compactness and compensated compactness techniques to pass to the limits in the sequence of Galerkin approximations and in the truncation level.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.