Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sparse Training with Lipschitz Continuous Loss Functions and a Weighted Group L0-norm Constraint (2202.06141v2)

Published 12 Feb 2022 in math.OC

Abstract: This paper is motivated by structured sparsity for deep neural network training. We study a weighted group L0-norm constraint, and present the projection and normal cone of this set. Using randomized smoothing, we develop zeroth and first-order algorithms for minimizing a Lipschitz continuous function constrained by any closed set which can be projected onto. Non-asymptotic convergence guarantees are proven in expectation for the proposed algorithms for two related convergence criteria which can be considered as approximate stationary points. Two further methods are given using the proposed algorithms: one with non-asymptotic convergence guarantees in high probability, and the other with asymptotic guarantees to a stationary point almost surely. We believe in particular that these are the first such non-asymptotic convergence results for constrained Lipschitz continuous loss functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.