Papers
Topics
Authors
Recent
Search
2000 character limit reached

Integral Fourier transforms and the integral Hodge conjecture for one-cycles on abelian varieties

Published 10 Feb 2022 in math.AG | (2202.05230v2)

Abstract: We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety whose minimal class is algebraic. In particular, any product of Jacobians of smooth projective curves over the complex numbers satisfies the integral Hodge conjecture for one-cycles. The main ingredient is a lift of the Fourier transform to integral Chow groups. Similarly, we prove the integral Tate conjecture for one-cycles on the Jacobian of a proper curve of compact type over the separable closure of a finitely generated field. Furthermore, abelian varieties satisfying such a conjecture are dense in their moduli space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.