Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Contrastive Learning for Volcanic Unrest Detection (2202.04030v1)

Published 8 Feb 2022 in cs.CV and eess.IV

Abstract: Ground deformation measured from Interferometric Synthetic Aperture Radar (InSAR) data is considered a sign of volcanic unrest, statistically linked to a volcanic eruption. Recent studies have shown the potential of using Sentinel-1 InSAR data and supervised deep learning (DL) methods for the detection of volcanic deformation signals, towards global volcanic hazard mitigation. However, detection accuracy is compromised from the lack of labelled data and class imbalance. To overcome this, synthetic data are typically used for finetuning DL models pre-trained on the ImageNet dataset. This approach suffers from poor generalisation on real InSAR data. This letter proposes the use of self-supervised contrastive learning to learn quality visual representations hidden in unlabeled InSAR data. Our approach, based on the SimCLR framework, provides a solution that does not require a specialized architecture nor a large labelled or synthetic dataset. We show that our self-supervised pipeline achieves higher accuracy with respect to the state-of-the-art methods, and shows excellent generalisation even for out-of-distribution test data. Finally, we showcase the effectiveness of our approach for detecting the unrest episodes preceding the recent Icelandic Fagradalsfjall volcanic eruption.

Citations (18)

Summary

We haven't generated a summary for this paper yet.