Papers
Topics
Authors
Recent
Search
2000 character limit reached

Universal Spam Detection using Transfer Learning of BERT Model

Published 7 Feb 2022 in cs.CL and cs.LG | (2202.03480v1)

Abstract: Deep learning transformer models become important by training on text data based on self-attention mechanisms. This manuscript demonstrated a novel universal spam detection model using pre-trained Google's Bidirectional Encoder Representations from Transformers (BERT) base uncased models with four datasets by efficiently classifying ham or spam emails in real-time scenarios. Different methods for Enron, Spamassain, Lingspam, and Spamtext message classification datasets, were used to train models individually in which a single model was obtained with acceptable performance on four datasets. The Universal Spam Detection Model (USDM) was trained with four datasets and leveraged hyperparameters from each model. The combined model was finetuned with the same hyperparameters from these four models separately. When each model using its corresponding dataset, an F1-score is at and above 0.9 in individual models. An overall accuracy reached 97%, with an F1 score of 0.96. Research results and implications were discussed.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.