Papers
Topics
Authors
Recent
2000 character limit reached

Boundary-aware Information Maximization for Self-supervised Medical Image Segmentation

Published 4 Feb 2022 in eess.IV and cs.CV | (2202.02371v2)

Abstract: Unsupervised pre-training has been proven as an effective approach to boost various downstream tasks given limited labeled data. Among various methods, contrastive learning learns a discriminative representation by constructing positive and negative pairs. However, it is not trivial to build reasonable pairs for a segmentation task in an unsupervised way. In this work, we propose a novel unsupervised pre-training framework that avoids the drawback of contrastive learning. Our framework consists of two principles: unsupervised over-segmentation as a pre-train task using mutual information maximization and boundary-aware preserving learning. Experimental results on two benchmark medical segmentation datasets reveal our method's effectiveness in improving segmentation performance when few annotated images are available.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.