Papers
Topics
Authors
Recent
Search
2000 character limit reached

ASR-Aware End-to-end Neural Diarization

Published 2 Feb 2022 in cs.CL, cs.SD, and eess.AS | (2202.01286v1)

Abstract: We present a Conformer-based end-to-end neural diarization (EEND) model that uses both acoustic input and features derived from an automatic speech recognition (ASR) model. Two categories of features are explored: features derived directly from ASR output (phones, position-in-word and word boundaries) and features derived from a lexical speaker change detection model, trained by fine-tuning a pretrained BERT model on the ASR output. Three modifications to the Conformer-based EEND architecture are proposed to incorporate the features. First, ASR features are concatenated with acoustic features. Second, we propose a new attention mechanism called contextualized self-attention that utilizes ASR features to build robust speaker representations. Finally, multi-task learning is used to train the model to minimize classification loss for the ASR features along with diarization loss. Experiments on the two-speaker English conversations of Switchboard+SRE data sets show that multi-task learning with position-in-word information is the most effective way of utilizing ASR features, reducing the diarization error rate (DER) by 20% relative to the baseline.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.