Mean-Field Langevin Dynamics: Exponential Convergence and Annealing
Abstract: Noisy particle gradient descent (NPGD) is an algorithm to minimize convex functions over the space of measures that include an entropy term. In the many-particle limit, this algorithm is described by a Mean-Field Langevin dynamics - a generalization of the Langevin dynamics with a non-linear drift - which is our main object of study. Previous work have shown its convergence to the unique minimizer via non-quantitative arguments. We prove that this dynamics converges at an exponential rate, under the assumption that a certain family of Log-Sobolev inequalities holds. This assumption holds for instance for the minimization of the risk of certain two-layer neural networks, where NPGD is equivalent to standard noisy gradient descent. We also study the annealed dynamics, and show that for a noise decaying at a logarithmic rate, the dynamics converges in value to the global minimizer of the unregularized objective function.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.