Papers
Topics
Authors
Recent
Search
2000 character limit reached

XNLP-completeness for Parameterized Problems on Graphs with a Linear Structure

Published 31 Jan 2022 in cs.CC | (2201.13119v2)

Abstract: In this paper, we showcase the class XNLP as a natural place for many hard problems parameterized by linear width measures. This strengthens existing $W[1]$-hardness proofs for these problems, since XNLP-hardness implies $W[t]$-hardness for all $t$. It also indicates, via a conjecture by Pilipczuk and Wrochna [ToCT 2018], that any XP algorithm for such problems is likely to require XP space. In particular, we show XNLP-completeness for natural problems parameterized by pathwidth, linear clique-width, and linear mim-width. The problems we consider are Independent Set, Dominating Set, Odd Cycle Transversal, ($q$-)Coloring, Max Cut, Maximum Regular Induced Subgraph, Feedback Vertex Set, Capacitated (Red-Blue) Dominating Set, and Bipartite Bandwidth.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.