Investigating Centrality Measures in Social Networks with Community Structure
Abstract: Centrality measures are crucial in quantifying the influence of the members of a social network. Although there has been a great deal of work dealing with this issue, the vast majority of classical centrality measures are agnostic of the community structure characterizing many social networks. Recent works have developed community-aware centrality measures that exploit features of the community structure information encountered in most real-world complex networks. In this paper, we investigate the interactions between 5 popular classical centrality measures and 5 community-aware centrality measures using 8 real-world online networks. Correlation as well as similarity measures between both type of centrality measures are computed. Results show that community-aware centrality measures can be divided into two groups. The first group, which includes Bridging centrality, Community Hub-Bridge and Participation Coefficient, provides distinctive node information as compared to classical centrality. This behavior is consistent across the networks. The second group which includes Community-based Mediator and Number of Neighboring Communities is characterized by more mixed results that vary across networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.