Augmenting Novelty Search with a Surrogate Model to Engineer Meta-Diversity in Ensembles of Classifiers (2201.12896v3)
Abstract: Using Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing ensembles for classification. However, using gradient descent to train evolved architectures during the search can be computationally prohibitive. Here we propose a method to overcome this limitation by using a surrogate model which estimates the behavioural distance between two neural network architectures required to calculate the sparseness term in Novelty Search. We demonstrate a speedup of 10 times over previous work and significantly improve on previous reported results on three benchmark datasets from Computer Vision -- CIFAR-10, CIFAR-100, and SVHN. This results from the expanded architecture search space facilitated by using a surrogate. Our method represents an improved paradigm for implementing horizontal scaling of learning algorithms by making an explicit search for diversity considerably more tractable for the same bounded resources.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.