Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improving Robustness by Enhancing Weak Subnets (2201.12765v2)

Published 30 Jan 2022 in cs.CV

Abstract: Despite their success, deep networks have been shown to be highly susceptible to perturbations, often causing significant drops in accuracy. In this paper, we investigate model robustness on perturbed inputs by studying the performance of internal sub-networks (subnets). Interestingly, we observe that most subnets show particularly poor robustness against perturbations. More importantly, these weak subnets are correlated with the overall lack of robustness. Tackling this phenomenon, we propose a new training procedure that identifies and enhances weak subnets (EWS) to improve robustness. Specifically, we develop a search algorithm to find particularly weak subnets and explicitly strengthen them via knowledge distillation from the full network. We show that EWS greatly improves both robustness against corrupted images as well as accuracy on clean data. Being complementary to popular data augmentation methods, EWS consistently improves robustness when combined with these approaches. To highlight the flexibility of our approach, we combine EWS also with popular adversarial training methods resulting in improved adversarial robustness.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.