Papers
Topics
Authors
Recent
2000 character limit reached

Low-Rank Tensor Completion Based on Bivariate Equivalent Minimax-Concave Penalty

Published 30 Jan 2022 in cs.CV and cs.LG | (2201.12709v3)

Abstract: Low-rank tensor completion (LRTC) is an important problem in computer vision and machine learning. The minimax-concave penalty (MCP) function as a non-convex relaxation has achieved good results in the LRTC problem. To makes all the constant parameters of the MCP function as variables so that futherly improving the adaptability to the change of singular values in the LRTC problem, we propose the bivariate equivalent minimax-concave penalty (BEMCP) theorem. Applying the BEMCP theorem to tensor singular values leads to the bivariate equivalent weighted tensor $\Gamma$-norm (BEWTGN) theorem, and we analyze and discuss its corresponding properties. Besides, to facilitate the solution of the LRTC problem, we give the proximal operators of the BEMCP theorem and BEWTGN. Meanwhile, we propose a BEMCP model for the LRTC problem, which is optimally solved based on alternating direction multiplier (ADMM). Finally, the proposed method is applied to the data restorations of multispectral image (MSI), magnetic resonance imaging (MRI) and color video (CV) in real-world, and the experimental results demonstrate that it outperforms the state-of-arts methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.