Papers
Topics
Authors
Recent
2000 character limit reached

Fair Stable Matching Meets Correlated Preferences

Published 29 Jan 2022 in cs.GT and cs.MA | (2201.12484v1)

Abstract: The stable matching problem sets the economic foundation of several practical applications ranging from school choice and medical residency to ridesharing and refugee placement. It is concerned with finding a matching between two disjoint sets of agents wherein no pair of agents prefer each other to their matched partners. The Deferred Acceptance (DA) algorithm is an elegant procedure that guarantees a stable matching for any input; however, its outcome may be unfair as it always favors one side by returning a matching that is optimal for one side (say men) and pessimal for the other side (say women). A desirable fairness notion is minimizing the sex-equality cost, i.e. the difference between the total rankings of both sides. Computing such stable matchings is a strongly NP-hard problem, which raises the question of what tractable algorithms to adopt in practice. We conduct a series of empirical evaluations on the properties of sex-equal stable matchings when preferences of agents on both sides are correlated. Our empirical results suggest that under correlated preferences, the DA algorithm returns stable matchings with low sex-equality cost, which further confirms its broad use in many practical applications.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.