Papers
Topics
Authors
Recent
2000 character limit reached

R-factor analysis of data generated by a combination of R- and Q-factors leads to biased loading estimates (2201.11973v4)

Published 28 Jan 2022 in stat.AP

Abstract: Effects of performing R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. It was noted that estimating a model comprising R- and Q-factors has to face loading indeterminacy beyond rotational indeterminacy. Although R-factor analysis of data based on a population model comprising R- and Q-factors is nevertheless possible, this may lead to model error. Accordingly, even in the population, the resulting R-factor loadings are not necessarily close estimates of the original population R-factor loadings. It was shown in a simulation study that large Q-factor variance induces an increase of the variation of R-factor loading estimates beyond chance level. The results indicate that performing R-factor analysis with data based on a population model comprising R- and Q-factors may result in substantial loading bias. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.