The iCanClean Algorithm: How to Remove Artifacts using Reference Noise Recordings
Abstract: Data recordings are often corrupted by noise, and it can be difficult to isolate clean data of interest. For example, mobile electroencephalography is commonly corrupted by motion artifact, which limits its use in real-world settings. Here, we describe a novel noise-canceling algorithm that uses canonical correlation analysis to find and remove subspaces of corrupted data recordings that are most strongly correlated with subspaces of reference noise recordings. The algorithm, termed iCanClean, is computationally efficient, which may be useful for real-time applications, such as brain computer interfaces. In future work, we will quantify the algorithm's performance and compare it with alternative cleaning methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.