Papers
Topics
Authors
Recent
2000 character limit reached

The iCanClean Algorithm: How to Remove Artifacts using Reference Noise Recordings

Published 27 Jan 2022 in eess.SP | (2201.11798v1)

Abstract: Data recordings are often corrupted by noise, and it can be difficult to isolate clean data of interest. For example, mobile electroencephalography is commonly corrupted by motion artifact, which limits its use in real-world settings. Here, we describe a novel noise-canceling algorithm that uses canonical correlation analysis to find and remove subspaces of corrupted data recordings that are most strongly correlated with subspaces of reference noise recordings. The algorithm, termed iCanClean, is computationally efficient, which may be useful for real-time applications, such as brain computer interfaces. In future work, we will quantify the algorithm's performance and compare it with alternative cleaning methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.