Papers
Topics
Authors
Recent
2000 character limit reached

Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features

Published 27 Jan 2022 in eess.AS, cs.LG, cs.SD, and eess.SP | (2201.11320v1)

Abstract: In this work, a novel stack of well-known technologies is presented to determine an automatic method to segment the heart sounds in a phonocardiogram (PCG). We will show a deep recurrent neural network (DRNN) capable of segmenting a PCG into its main components and a very specific way of extracting instantaneous frequency that will play an important role in the training and testing of the proposed model. More specifically, it involves a Long Short-Term Memory (LSTM) neural network accompanied by the Fourier Synchrosqueezed Transform (FSST) used to extract instantaneous time-frequency features from a PCG. The present approach was tested on heart sound signals longer than 5 seconds and shorter than 35 seconds from freely-available databases. This approach proved that, with a relatively small architecture, a small set of data, and the right features, this method achieved an almost state-of-the-art performance, showing an average sensitivity of 89.5%, an average positive predictive value of 89.3\% and an average accuracy of 91.3%.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.