Papers
Topics
Authors
Recent
2000 character limit reached

Highly Generalizable Models for Multilingual Hate Speech Detection

Published 27 Jan 2022 in cs.CL | (2201.11294v1)

Abstract: Hate speech detection has become an important research topic within the past decade. More private corporations are needing to regulate user generated content on different platforms across the globe. In this paper, we introduce a study of multilingual hate speech classification. We compile a dataset of 11 languages and resolve different taxonomies by analyzing the combined data with binary labels: hate speech or not hate speech. Defining hate speech in a single way across different languages and datasets may erase cultural nuances to the definition, therefore, we utilize language agnostic embeddings provided by LASER and MUSE in order to develop models that can use a generalized definition of hate speech across datasets. Furthermore, we evaluate prior state of the art methodologies for hate speech detection under our expanded dataset. We conduct three types of experiments for a binary hate speech classification task: Multilingual-Train Monolingual-Test, MonolingualTrain Monolingual-Test and Language-Family-Train Monolingual Test scenarios to see if performance increases for each language due to learning more from other language data.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.