Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparsity Regularization For Cold-Start Recommendation (2201.10711v3)

Published 26 Jan 2022 in cs.IR and cs.LG

Abstract: Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. In this paper we introduce a novel representation for user-vectors by combining user demographics and user preferences, making the model a hybrid system which uses Collaborative Filtering and Content Based Recommendation. Our system models user purchase behavior using weighted user-product preferences (explicit feedback) rather than binary user-product interactions (implicit feedback). Using this we develop a novel sparse adversarial model, SRLGAN, for Cold-Start Recommendation leveraging the sparse user-purchase behavior which ensures training stability and avoids over-fitting on warm users. We evaluate the SRLGAN on two popular datasets and demonstrate state-of-the-art results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.