Papers
Topics
Authors
Recent
2000 character limit reached

Convergence of Invariant Graph Networks

Published 25 Jan 2022 in cs.LG | (2201.10129v3)

Abstract: Although theoretical properties such as expressive power and over-smoothing of graph neural networks (GNN) have been extensively studied recently, its convergence property is a relatively new direction. In this paper, we investigate the convergence of one powerful GNN, Invariant Graph Network (IGN) over graphs sampled from graphons. We first prove the stability of linear layers for general $k$-IGN (of order $k$) based on a novel interpretation of linear equivariant layers. Building upon this result, we prove the convergence of $k$-IGN under the model of \citet{ruiz2020graphon}, where we access the edge weight but the convergence error is measured for graphon inputs. Under the more natural (and more challenging) setting of \citet{keriven2020convergence} where one can only access 0-1 adjacency matrix sampled according to edge probability, we first show a negative result that the convergence of any IGN is not possible. We then obtain the convergence of a subset of IGNs, denoted as IGN-small, after the edge probability estimation. We show that IGN-small still contains function class rich enough that can approximate spectral GNNs arbitrarily well. Lastly, we perform experiments on various graphon models to verify our statements.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.