2000 character limit reached
Diversity Enhancement via Magnitude (2201.10037v1)
Published 25 Jan 2022 in cs.NE and math.OC
Abstract: Promoting and maintaining diversity of candidate solutions is a key requirement of evolutionary algorithms in general and multi-objective evolutionary algorithms in particular. In this paper, we use the recently developed theory of magnitude to construct a gradient flow and similar notions that systematically manipulate finite subsets of Euclidean space to enhance their diversity, and apply the ideas in service of multi-objective evolutionary algorithms. We demonstrate diversity enhancement on benchmark problems using leading algorithms, and discuss extensions of the framework.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.