Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quantum density estimation with density matrices: Application to quantum anomaly detection (2201.10006v5)

Published 24 Jan 2022 in quant-ph

Abstract: Density estimation is a central task in statistics and machine learning. This problem aims to determine the underlying probability density function that best aligns with an observed data set. Some of its applications include statistical inference, unsupervised learning, and anomaly detection. Despite its relevance, few works have explored the application of quantum computing to density estimation. In this article, we present a novel quantum-classical density matrix density estimation model, called Q-DEMDE, based on the expected values of density matrices and a novel quantum embedding called quantum Fourier features. The method uses quantum hardware to build probability distributions of training data via mixed quantum states. As a core subroutine, we propose a new algorithm to estimate the expected value of a mixed density matrix from its spectral decomposition on a quantum computer. In addition, we present an application of the method for quantum-classical anomaly detection. We evaluated the density estimation model with quantum random and quantum adaptive Fourier features on different data sets on a quantum simulator and a real quantum computer. An important result of this work is to show that it is possible to perform density estimation and anomaly detection with high performance on present-day quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. B. Nachman and D. Shih, Anomaly detection with density estimation, Phys. Rev. D 101, 075042 (2020).
  2. F. D. Bortoloti, E. de Oliveira, and P. M. Ciarelli, Supervised kernel density estimation k-means, Expert Systems with Applications 168, 114350 (2021).
  3. T. K. Anderson, Kernel density estimation and k-means clustering to profile road accident hotspots, Accident Analysis & Prevention 41, 359 (2009).
  4. H. Kato, Development of a spatio-temporal analysis method to support the prevention of covid-19 infection: space-time kernel density estimation using gps location history data, Urban Informatics and Future Cities , 51 (2021).
  5. L. Srikanth and I. Srikanth, A case study on kernel density estimation and hotspot analysis methods in traffic safety management, in 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS) (IEEE, 2020) pp. 99–104.
  6. M. K. Varanasi and B. Aazhang, Parametric generalized gaussian density estimation, The Journal of the Acoustical Society of America 86, 1404 (1989).
  7. V. Vapnik and S. Mukherjee, Support vector method for multivariate density estimation, in Advances in Neural Information Processing Systems, Vol. 12, edited by S. Solla, T. Leen, and K. Müller (MIT Press, 1999).
  8. M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, https://doi.org/10.1214/aoms/1177728190 27, 832 (1956).
  9. E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics 33, 1065 (1962).
  10. Z. Wang and D. W. Scott, Nonparametric density estimation for high-dimensional data—algorithms and applications, Wiley Interdisciplinary Reviews: Computational Statistics 11, e1461 (2019).
  11. V. Vargas-Calderón, F. A. González, and H. Vinck-Posada, Optimisation-free density estimation and classification with quantum circuits, Quantum Machine Intelligence 4, 1 (2022).
  12. S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal component analysis, Nature Physics 10, 631 (2014).
  13. P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS , 124 (1994).
  14. S. Haroche, Entanglement, decoherence and the quantum/classical boundary, Physics today 51, 36 (1998).
  15. J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
  16. L. Banchi, Robust quantum classifiers via nisq adversarial learning, Nature Computational Science 2, 699 (2022).
  17. A. Rahimi and B. Recht, Random features for large-scale kernel machines, in Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference (2009).
  18. N. A. Nghiem, S. Y.-C. Chen, and T.-C. Wei, Unified framework for quantum classification, Phys. Rev. Res. 3, 033056 (2021).
  19. F. A. González, R. Ramos-Pollán, and J. A. Gallego-Mejia, Kernel density matrices for probabilistic deep learning (2023), arXiv:2305.18204 [cs.LG] .
  20. P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Physical review letters 113, 130503 (2014).
  21. G. Sergioli, R. Giuntini, and H. Freytes, A new quantum approach to binary classification, PloS one 14, e0216224 (2019).
  22. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Quantum Computation and Quantum Information 10.1017/CBO9780511976667 (2010).
  23. F. A. González, V. Vargas-Calderón, and H. Vinck-Posada, Classification with quantum measurements, Journal of the Physical Society of Japan 90, 044002 (2021), https://doi.org/10.7566/JPSJ.90.044002 .
  24. E. G. Bǎzǎvan, F. Li, and C. Sminchisescu, Fourier Kernel Learning, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7573 LNCS, 459 (2012).
  25. M. Schuld, R. Sweke, and J. J. Meyer, Effect of data encoding on the expressive power of variational quantum-machine-learning models, Physical Review A 103, 032430 (2021a).
  26. E. Stoudenmire and D. J. Schwab, Supervised learning with tensor networks, Advances in neural information processing systems 29 (2016).
  27. W. Rudin, Fourier analysis on groups (Courier Dover Publications, Mineola, New York, 2017).
  28. V. C. Raykar, R. Duraiswami, and L. H. Zhao, Fast computation of kernel estimators, Journal of Computational and Graphical Statistics 19, 205 (2010).
  29. C. Yang, R. Duraiswami, and L. S. Davis, Efficient kernel machines using the improved fast gauss transform, Advances in neural information processing systems 17 (2004).
  30. Yang, Duraiswami, and Gumerov, Improved fast gauss transform and efficient kernel density estimation, in Proceedings ninth IEEE international conference on computer vision (IEEE, 2003) pp. 664–671.
  31. V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis of quantum-logic circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000 (2006).
  32. Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nature Physics 17, 1013 (2021).
  33. W. M. Watkins, S. Y.-C. Chen, and S. Yoo, Quantum machine learning with differential privacy, Scientific Reports 13, 2453 (2023).
  34. J. A. Gallego-Mejia and F. A. González, Demande: Density matrix neural density estimation, IEEE Access 11, 53062 (2023).
  35. L. F. Chen, An improved negative selection approach for anomaly detection: with applications in medical diagnosis and quality inspection, Neural Computing and Applications 2011 22:5 22, 901 (2011).
  36. F. A. González and D. Dasgupta, Anomaly detection using real-valued negative selection, Genetic Programming and Evolvable Machines 4, 383 (2003).
  37. N. Liu and P. Rebentrost, Quantum machine learning for quantum anomaly detection, Physical Review A 97, 042315 (2018).
  38. D. Herr, B. Obert, and M. Rosenkranz, Anomaly detection with variational quantum generative adversarial networks, Quantum Science and Technology 6, 045004 (2021).
  39. C. C. Aggarwal and S. Sathe, Theoretical Foundations and Algorithms for Outlier Ensembles, ACM SIGKDD Explorations Newsletter 17, 24 (2015).
  40. O. Perdomo, V. Leyton-Ortega, and A. Perdomo-Ortiz, Entanglement types for two-qubit states with real amplitudes, Quantum Information Processing 20, 1 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: