Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning to Minimize the Remainder in Supervised Learning (2201.09193v2)

Published 23 Jan 2022 in cs.CV and cs.LG

Abstract: The learning process of deep learning methods usually updates the model's parameters in multiple iterations. Each iteration can be viewed as the first-order approximation of Taylor's series expansion. The remainder, which consists of higher-order terms, is usually ignored in the learning process for simplicity. This learning scheme empowers various multimedia based applications, such as image retrieval, recommendation system, and video search. Generally, multimedia data (e.g., images) are semantics-rich and high-dimensional, hence the remainders of approximations are possibly non-zero. In this work, we consider the remainder to be informative and study how it affects the learning process. To this end, we propose a new learning approach, namely gradient adjustment learning (GAL), to leverage the knowledge learned from the past training iterations to adjust vanilla gradients, such that the remainders are minimized and the approximations are improved. The proposed GAL is model- and optimizer-agnostic, and is easy to adapt to the standard learning framework. It is evaluated on three tasks, i.e., image classification, object detection, and regression, with state-of-the-art models and optimizers. The experiments show that the proposed GAL consistently enhances the evaluated models, whereas the ablation studies validate various aspects of the proposed GAL. The code is available at \url{https://github.com/luoyan407/gradient_adjustment.git}.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.