Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-Tuning: Learning Contextualized Prompts for Natural Language Generation (2201.08670v2)

Published 21 Jan 2022 in cs.CL

Abstract: Recently, pretrained LLMs (PLMs) have had exceptional success in language generation. To leverage the rich knowledge encoded by PLMs, a simple yet powerful paradigm is to use prompts in the form of either discrete tokens or continuous embeddings. In existing studies, these prompting methods are typically independent of the inputs, lacking sufficient consideration of input semantics. To address this issue, we propose a novel continuous prompting approach, called context-tuning, to fine-tuning PLMs for natural language generation. Firstly, the prompts are derived based on the input text to elicit useful knowledge from PLMs for generation. We refer to such prompts as contextualized prompts. Secondly, we use continuous inverse prompting to improve the process of natural language generation by modeling an inverse generation process from output to input, making the generated text more relevant to the inputs. Furthermore, we utilize a lightweight context-tuning method that fine-tunes only 0.12% of the parameters while maintaining good performance. Our code is publicly available at https://github.com/RUCAIBox/Context-Tuning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tianyi Tang (30 papers)
  2. Junyi Li (92 papers)
  3. Wayne Xin Zhao (196 papers)
  4. Ji-Rong Wen (299 papers)
Citations (15)