Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm (2201.08349v1)

Published 20 Jan 2022 in math.ST, stat.CO, stat.ML, and stat.TH

Abstract: We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincar\'e inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.