Papers
Topics
Authors
Recent
Search
2000 character limit reached

From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven Learning in Artificial Intelligence Tasks

Published 20 Jan 2022 in cs.AI and cs.LG | (2201.08300v1)

Abstract: Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition. In the AI community, artificial curiosity provides a natural intrinsic motivation for efficient learning as inspired by human cognitive development; meanwhile, it can bridge the existing gap between AI research and practical application scenarios, such as overfitting, poor generalization, limited training samples, high computational cost, etc. As a result, curiosity-driven learning (CDL) has become increasingly popular, where agents are self-motivated to learn novel knowledge. In this paper, we first present a comprehensive review on the psychological study of curiosity and summarize a unified framework for quantifying curiosity as well as its arousal mechanism. Based on the psychological principle, we further survey the literature of existing CDL methods in the fields of Reinforcement Learning, Recommendation, and Classification, where both advantages and disadvantages as well as future work are discussed. As a result, this work provides fruitful insights for future CDL research and yield possible directions for further improvement.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 5 likes about this paper.