Papers
Topics
Authors
Recent
2000 character limit reached

Mean field analysis of stochastic networks with reservation

Published 20 Jan 2022 in math.PR | (2201.08298v2)

Abstract: The problem of reservation in a large distributed system is analyzed via a new mathematical model. A typical application is a station-based car-sharing system which can be described as a closed stochastic network where the nodes are the stations and the customers are the cars. The user can reserve the car and the parking space. In the paper, we study the evolution of the system when the reservation of parking spaces and cars is effective for all users. The asymptotic behavior of the underlying stochastic network is given when the number $N$ of stations and the fleet size increase at the same rate. The analysis involves a Markov process on a state space with dimension of order $N2$. It is quite remarkable that the state process describing the evolution of the stations, whose dimension is of order $N$, converges in distribution, although not Markov, to an non-homogeneous Markov process. We prove this mean-field convergence. We also prove, using combinatorial arguments, that the mean-field limit has a unique equilibrium measure when the time between reserving and picking up the car is sufficiently small. This result extends the case where only the parking space can be reserved.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.