Papers
Topics
Authors
Recent
2000 character limit reached

Invasion Dynamics in the Biased Voter Process (2201.08207v2)

Published 20 Jan 2022 in q-bio.PE, cs.CC, cs.DS, cs.GT, and cs.SI

Abstract: The voter process is a classic stochastic process that models the invasion of a mutant trait $A$ (e.g., a new opinion, belief, legend, genetic mutation, magnetic spin) in a population of agents (e.g., people, genes, particles) who share a resident trait $B$, spread over the nodes of a graph. An agent may adopt the trait of one of its neighbors at any time, while the invasion bias $r\in(0,\infty)$ quantifies the stochastic preference towards ($r>1$) or against ($r<1$) adopting $A$ over $B$. Success is measured in terms of the fixation probability, i.e., the probability that eventually all agents have adopted the mutant trait $A$. In this paper we study the problem of fixation probability maximization under this model: given a budget $k$, find a set of $k$ agents to initiate the invasion that maximizes the fixation probability. We show that the problem is NP-hard for both $r>1$ and $r<1$, while the latter case is also inapproximable within any multiplicative factor. On the positive side, we show that when $r>1$, the optimization function is submodular and thus can be greedily approximated within a factor $1-1/e$. An experimental evaluation of some proposed heuristics corroborates our results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.