Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hypergeometric sheaves for classical groups via geometric Langlands (2201.08063v1)

Published 20 Jan 2022 in math.AG, math.NT, and math.RT

Abstract: In a previous paper, the first and third authors gave an explicit realization of the geometric Langlands correspondence for hypergeometric sheaves, considered as $\textrm{GL}n$-local systems. Certain hypergeometric local systems admit a symplectic or orthogonal structure, which can be viewed as $\check{G}$-local systems, for a classical group $\check{G}$. This article aims to realize the geometric Langlands correspondence for these $\check{G}$-local systems. We study this problem from two aspects. In the first approach, we define the hypergeometric automorphic data for a classical group $G$ in the framework of Yun, one of whose local components is a new class of euphotic representations in the sense of Jakob-Yun. We prove the rigidity of hypergeometric automorphic data under natural assumptions, which allows us to define $\check{G}$-local systems $\mathcal{E}{\check{G}}$ on $\mathbb{G}m$ as Hecke eigenvalues (in both $\ell$-adic and de Rham setting). In the second approach (which works only in the de Rham setting), we quantize an enhanced ramified Hitchin system, following Beilinson-Drinfeld and Zhu, and identify $\mathcal{E}{\check{G}}$ with certain $\check{G}$-opers on $\mathbb{G}_m$. Finally, we compare these $\check{G}$-opers with hypergeometric local systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube