Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kloosterman sheaves for reductive groups (1005.2765v1)

Published 16 May 2010 in math.AG, math.NT, and math.RT

Abstract: Deligne constructed a remarkable local system on $\bP1-{0,\infty}$ attached to a family of Kloosterman sums. Katz calculated its monodromy and asked whether there are Kloosterman sheaves for general reductive groups and which automorphic forms should be attached to these local systems under the Langlands correspondence. Motivated by work of Gross and Frenkel-Gross we find an explicit family of such automorphic forms and even a simple family of automorphic sheaves in the framework of the geometric Langlands program. We use these automorphic sheaves to construct l-adic Kloosterman sheaves for any reductive group in a uniform way, and describe the local and global monodromy of these Kloosterman sheaves. In particular, they give motivic Galois representations with exceptional monodromy groups G_2,F_4,E_7 and E_8. This also gives an example of the geometric Langlands correspondence with wild ramifications for any reductive group.

Summary

We haven't generated a summary for this paper yet.