Papers
Topics
Authors
Recent
2000 character limit reached

Time Series Generation with Masked Autoencoder

Published 14 Jan 2022 in cs.LG | (2201.07006v3)

Abstract: This paper shows that masked autoencoder with extrapolator (ExtraMAE) is a scalable self-supervised model for time series generation. ExtraMAE randomly masks some patches of the original time series and learns temporal dynamics by recovering the masked patches. Our approach has two core designs. First, ExtraMAE is self-supervised. Supervision allows ExtraMAE to effectively and efficiently capture the temporal dynamics of the original time series. Second, ExtraMAE proposes an extrapolator to disentangle two jobs of the decoder: recovering latent representations and mapping them back into the feature space. These unique designs enable ExtraMAE to consistently and significantly outperform state-of-the-art (SoTA) benchmarks in time series generation. The lightweight architecture also makes ExtraMAE fast and scalable. ExtraMAE shows outstanding behavior in various downstream tasks such as time series classification, prediction, and imputation. As a self-supervised generative model, ExtraMAE allows explicit management of the synthetic data. We hope this paper will usher in a new era of time series generation with self-supervised models.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.