Papers
Topics
Authors
Recent
Search
2000 character limit reached

Knowledge Sharing via Domain Adaptation in Customs Fraud Detection

Published 18 Jan 2022 in cs.AI, cs.CY, and cs.LG | (2201.06759v1)

Abstract: Knowledge of the changing traffic is critical in risk management. Customs offices worldwide have traditionally relied on local resources to accumulate knowledge and detect tax fraud. This naturally poses countries with weak infrastructure to become tax havens of potentially illicit trades. The current paper proposes DAS, a memory bank platform to facilitate knowledge sharing across multi-national customs administrations to support each other. We propose a domain adaptation method to share transferable knowledge of frauds as prototypes while safeguarding the local trade information. Data encompassing over 8 million import declarations have been used to test the feasibility of this new system, which shows that participating countries may benefit up to 2-11 times in fraud detection with the help of shared knowledge. We discuss implications for substantial tax revenue potential and strengthened policy against illicit trades.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.