Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dilated Convolutional Neural Networks for Lightweight Diacritics Restoration (2201.06757v1)

Published 18 Jan 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Diacritics restoration has become a ubiquitous task in the Latin-alphabet-based English-dominated Internet language environment. In this paper, we describe a small footprint 1D dilated convolution-based approach which operates on a character-level. We find that solutions based on 1D dilated convolutional neural networks are competitive alternatives to models based on recursive neural networks or linguistic modeling for the task of diacritics restoration. Our solution surpasses the performance of similarly sized models and is also competitive with larger models. A special feature of our solution is that it even runs locally in a web browser. We also provide a working example of this browser-based implementation. Our model is evaluated on different corpora, with emphasis on the Hungarian language. We performed comparative measurements about the generalization power of the model in relation to three Hungarian corpora. We also analyzed the errors to understand the limitation of corpus-based self-supervised training.

Summary

We haven't generated a summary for this paper yet.