Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Combinatorial identities associated with a bivariate generating function for overpartition pairs (2201.06746v1)

Published 18 Jan 2022 in math.CO and math.NT

Abstract: We obtain a three-parameter $q$-series identity that generalizes two results of Chan and Mao. By specializing our identity, we derive new results of combinatorial significance in connection with $N(r, s, m, n)$, a function counting certain overpartition pairs recently introduced by Bringmann, Lovejoy and Osburn. For example, one of our identities gives a closed-form evaluation of a double series in terms of Chebyshev polynomials of the second kind, thereby resulting in an analogue of Euler's pentagonal number theorem. Another of our results expresses a multi-sum involving $N(r, s, m, n)$ in terms of just the partition function $p(n)$. Using a result of Shimura we also relate a certain double series with a weight 7/2 theta series.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.