Papers
Topics
Authors
Recent
Search
2000 character limit reached

Parameterized Convex Universal Approximators for Decision-Making Problems

Published 17 Jan 2022 in cs.LG, cs.NE, and math.OC | (2201.06298v2)

Abstract: Parameterized max-affine (PMA) and parameterized log-sum-exp (PLSE) networks are proposed for general decision-making problems. The proposed approximators generalize existing convex approximators, namely, max-affine (MA) and log-sum-exp (LSE) networks, by considering function arguments of condition and decision variables and replacing the network parameters of MA and LSE networks with continuous functions with respect to the condition variable. The universal approximation theorem of PMA and PLSE is proven, which implies that PMA and PLSE are shape-preserving universal approximators for parameterized convex continuous functions. Practical guidelines for incorporating deep neural networks within PMA and PLSE networks are provided. A numerical simulation is performed to demonstrate the performance of the proposed approximators. The simulation results support that PLSE outperforms other existing approximators in terms of minimizer and optimal value errors with scalable and efficient computation for high-dimensional cases.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.