Explicit and Efficient Constructions of linear Codes Against Adversarial Insertions and Deletions
Abstract: In this work, we study linear error-correcting codes against adversarial insertion-deletion (insdel) errors, a topic that has recently gained a lot of attention. We construct linear codes over $\mathbb{F}q$, for $q=\text{poly}(1/\varepsilon)$, that can efficiently decode from a $\delta$ fraction of insdel errors and have rate $(1-4\delta)/8-\varepsilon$. We also show that by allowing codes over $\mathbb{F}{q2}$ that are linear over $\mathbb{F}_q$, we can improve the rate to $(1-\delta)/4-\varepsilon$ while not sacrificing efficiency. Using this latter result, we construct fully linear codes over $\mathbb{F}_2$ that can efficiently correct up to $\delta < 1/54$ fraction of deletions and have rate $R = (1-54\cdot \delta)/1216$. Cheng, Guruswami, Haeupler, and Li [CGHL21] constructed codes with (extremely small) rates bounded away from zero that can correct up to a $\delta < 1/400$ fraction of insdel errors. They also posed the problem of constructing linear codes that get close to the half-Singleton bound (proved in [CGHL21]) over small fields. Thus, our results significantly improve their construction and get much closer to the bound.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.