Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quasi-Newton acceleration of EM and MM algorithms via Broyden$'$s method

Published 15 Jan 2022 in math.OC, stat.CO, and stat.ME | (2201.05935v1)

Abstract: The principle of majorization-minimization (MM) provides a general framework for eliciting effective algorithms to solve optimization problems. However, they often suffer from slow convergence, especially in large-scale and high-dimensional data settings. This has drawn attention to acceleration schemes designed exclusively for MM algorithms, but many existing designs are either problem-specific or rely on approximations and heuristics loosely inspired by the optimization literature. We propose a novel, rigorous quasi-Newton method for accelerating any valid MM algorithm, cast as seeking a fixed point of the MM \textit{algorithm map}. The method does not require specific information or computation from the objective function or its gradient and enjoys a limited-memory variant amenable to efficient computation in high-dimensional settings. By connecting our approach to Broyden's classical root-finding methods, we establish convergence guarantees and identify conditions for linear and super-linear convergence. These results are validated numerically and compared to peer methods in a thorough empirical study, showing that it achieves state-of-the-art performance across a diverse range of problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.