Papers
Topics
Authors
Recent
Search
2000 character limit reached

Domain Adaptation in LiDAR Semantic Segmentation via Alternating Skip Connections and Hybrid Learning

Published 14 Jan 2022 in cs.CV and cs.LG | (2201.05585v2)

Abstract: In this paper we address the challenging problem of domain adaptation in LiDAR semantic segmentation. We consider the setting where we have a fully-labeled data set from source domain and a target domain with a few labeled and many unlabeled examples. We propose a domain adaption framework that mitigates the issue of domain shift and produces appealing performance on the target domain. To this end, we develop a GAN-based image-to-image translation engine that has generators with alternating connections, and couple it with a state-of-the-art LiDAR semantic segmentation network. Our framework is hybrid in nature in the sense that our model learning is composed of self-supervision, semi-supervision and unsupervised learning. Extensive experiments on benchmark LiDAR semantic segmentation data sets demonstrate that our method achieves superior performance in comparison to strong baselines and prior arts.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.