Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The curse of overparametrization in adversarial training: Precise analysis of robust generalization for random features regression (2201.05149v2)

Published 13 Jan 2022 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Successful deep learning models often involve training neural network architectures that contain more parameters than the number of training samples. Such overparametrized models have been extensively studied in recent years, and the virtues of overparametrization have been established from both the statistical perspective, via the double-descent phenomenon, and the computational perspective via the structural properties of the optimization landscape. Despite the remarkable success of deep learning architectures in the overparametrized regime, it is also well known that these models are highly vulnerable to small adversarial perturbations in their inputs. Even when adversarially trained, their performance on perturbed inputs (robust generalization) is considerably worse than their best attainable performance on benign inputs (standard generalization). It is thus imperative to understand how overparametrization fundamentally affects robustness. In this paper, we will provide a precise characterization of the role of overparametrization on robustness by focusing on random features regression models (two-layer neural networks with random first layer weights). We consider a regime where the sample size, the input dimension and the number of parameters grow in proportion to each other, and derive an asymptotically exact formula for the robust generalization error when the model is adversarially trained. Our developed theory reveals the nontrivial effect of overparametrization on robustness and indicates that for adversarially trained random features models, high overparametrization can hurt robust generalization.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com