Papers
Topics
Authors
Recent
2000 character limit reached

Recursive Least Squares Policy Control with Echo State Network

Published 13 Jan 2022 in cs.LG | (2201.04781v1)

Abstract: The echo state network (ESN) is a special type of recurrent neural networks for processing the time-series dataset. However, limited by the strong correlation among sequential samples of the agent, ESN-based policy control algorithms are difficult to use the recursive least squares (RLS) algorithm to update the ESN's parameters. To solve this problem, we propose two novel policy control algorithms, ESNRLS-Q and ESNRLS-Sarsa. Firstly, to reduce the correlation of training samples, we use the leaky integrator ESN and the mini-batch learning mode. Secondly, to make RLS suitable for training ESN in mini-batch mode, we present a new mean-approximation method for updating the RLS correlation matrix. Thirdly, to prevent ESN from over-fitting, we use the L1 regularization technique. Lastly, to prevent the target state-action value from overestimation, we employ the Mellowmax method. Simulation results show that our algorithms have good convergence performance.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.